Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Acta Pharmaceutica Sinica ; (12): 1563-9, 2013.
Article in Chinese | WPRIM | ID: wpr-445433

ABSTRACT

This study is to optimize the preparation process of fusion protein Fv-LDP which was expressed in the form of inclusion body and consisted of lidamycin apoprotein LDP and single-chain Fv antibody (scFv) directed against type IV collagenase. The preparation and the dissolution of inclusion body, the immobilized metal affinity chromatography of the target protein and the renaturization by stepwise dialysis were optimized by single-factor analysis or orthogonal design. In addition, the refolded fusion protein Fv-LDP was refined by Sephadex G-75 chromatography followed by fluorescence-activated cell sorter (FACS)-based saturation binding assay to measure its antigen-binding activity. After optimization of the process, the purity of fusion protein Fv-LDP existed in the inclusion body was 63.9% and the corresponding solubility was 95.7%; Under denaturing conditions, the purity of fusion protein Fv-LDP was more than 95% after the purification process. The percentage of monomeric fusion protein Fv-LDP was 60% after the refolding process, while it was further refined to 85% which was 5.6-fold higher than that of the initial refolding condition. The refined fusion protein Fv-LDP could bind to human lung adenocarcinoma PAa cells and human hepatoma BEL-7402 cells with the dissociation constants (Kd) of 0.176 micromol x L(-1) and 0.904 micromol x L(-1), respectively. The preparation process of fusion protein Fv-LDP has been successfully optimized, which provides the experimental basis for the production and future development of fusion protein Fv-LDP, and might serve as a relatively practical system for the preparation of other scFv-based proteins expressed in the form of inclusion body.

2.
Acta Pharmaceutica Sinica ; (12): 582-8, 2010.
Article in Chinese | WPRIM | ID: wpr-382433

ABSTRACT

This study is to investigate the binding capability of lidamycin apoprotein (LDP), an enediyne-associated apoprotein of the chromoprotein antitumor antibiotic family, to human breast cancer and normal tissues, the correlation of LDP binding capability to human breast cancer tissues and the expression of tumor therapeutic targets such as VEGF and HER2. In this study, the binding capability of LDP to human breast cancer tissues was detected with tissue microarray. The correlation study of LDP binding capability to human breast tumor tissues and relevant therapeutic targets was performed on breast cancer tissue microarrays. Immunocytochemical examination was used to detect the binding capability of LDP to human breast carcinoma MCF-7 cells. As a result, tissue microarray showed that LDP staining of 73.2% (30/41) of breast cancer tissues was positive, whereas that of 48.3% (15/31) of the adjacent normal breast specimens was positive. The difference between the tumor and normal samples was significant (Chi2 = 4.63, P < 0.05). LDP immunoreactivity in breast cancer correlated significantly with the overexpression of VEGF and HER2 (P < 0.001 and < 0.01, r = 0.389 and 0.287, respectively). Determined with confocal immunofluorescent analysis, LDP showed the binding capability to mammary carcinoma MCF-7 cells. It is demonstrated that LDP can bind to human breast cancer tissues and there is significant difference between the breast cancer tissues and the corresponding normal tissues. Notably, the binding reactivity shows positive correlation with the expression of VEGF and HER2 in breast carcinoma tissues. The results imply that LDP may have a potential use as targeting drug carrier in the research and development of new anticancer therapeutics. This study may provide reference for drug combination of LDM and other therapeutic agents.

3.
Chinese Journal of Pathophysiology ; (12): 781-2001.
Article in Chinese | WPRIM | ID: wpr-592746

ABSTRACT

AIM: PSP94 has been shown promise as a potential prostate cancer marker and it was reported that PSP94 can inhibit the growth of prostate cancer cell in vitro and in vivo. This study aimed to construct recombinant human PSP94 expression vector. METHODS:The PSP94 cDNA was obtained from normal prostate tissue, and recombinant plasmid pUC19-PSP94 was constructed. The target gene was identified and sequenced. Then the PSP94 gene was inserted to the secretory expression vector. RESULTS:The gene sequence of PSP94 was identified. The recombinant vector was constructed. The secreted PSP94 was isolated and identified by Western blot. CONCLUSION:The recombinated PSP94 could expressed PSP94 successfully.

SELECTION OF CITATIONS
SEARCH DETAIL